Laboratories and Equipment's

Criterion 6 Facilities and Technical Support

6.1 Adequate and well-equipped laboratories, and technical manpower (40)

G		No. of		Weekly Technical manpower sup			pport
S. No	Name of the Laboratory	per setup (Batch size)	List of important equipment	ation status	Name of technical staff	Designation	Qualif - icatio n
1	Mechanical Workshop	4 students per setup	Lathe, Manek make, 250 mm swing	16 hours	Mr. G. M. Reddy	Laboratory Assistant	DME
	(including benchwork and fitting,		Turret mill, Falcon make, model FM-2S,		Mr. K. N. Rao	Laboratory Assistant	ITI
	carpentry, sheet metal work, welding, turning, milling, drilling, and tapping for workshop practice)	carpentry, sheet metal work, welding, turning,	Metal working lathes, Osaki make, model MML300		Mr. R. N. Rao	Laboratory Assistant	DEE & ITI
			Metal working mill cum drills, Osaki make, model MMD250				
	1		Double column band saw, Krishna make, model KE				
			Vertical band saw, Metabo make, model BAS 260 Swift				
			Pillar type drilling machines, Sohit make - model MEW20, Kobe make - model DPB350, Osaki make - model PDB132				
			Grinders, Kobe Industrial Power Tools make, SKIL				

			 make & Bosch make, model GBG8 Professional Arc welders: AdorFontech make, model Tornado 401& Tayor make model Arc200G Oxy-acetylene welding kit Industrial shears, Atlas make, model BS120 Power tools: Planer, Jigsaw, Cutting machine, and Drill Anvils and Swage Blocks Bench vices, Universal vices, Carpenter vices, Drill press vices, Milling vice 				
2	Manufacturing and Metrology Laboratory	4 students per setup	CNC Lathe - Lokesh make - model TL200	6 hours	Mr. G. M. Reddy	Laboratory Assistant	DME
			CNC milling machine - BFW make - model Chandra		Mr. K. N. Rao	Laboratory Assistant	ITI
					Mr. R. N. Rao	Laboratory Assistant	

	CNC milling machine - Intelitek make - model Benchmill 6000		DEE & ITI
	CNC milling machine, Intelitek make, model Promill 8000		
	Injection molding machine, All Plast make, model ABST-60		
	Shared conventional machines listed under workshop equipment		
	Granite surface plates, Height gage & Spirit levels		
	Vernier calipers, Steel rules, micrometers & bore gages		
	Sine bar & Bevel protractor		
	Gear caliper		
	Cutting tools for turning, milling, drilling, threading & knurling		
	Slip gage set, thread gages, three wire sets, dial indicator, magnetic stand, parallel blocks, fixturing and work holding sets, V- block, edge finder,Tri- squares & scriber		
l			

			Hand tool sets including wrenches, pliers, calipers, hammers, bolt cutter, etc. Portable surface roughness tester & comparator type surface roughness gage Soldering irons				
3	Mechanical Laboratory (Thermal engineering, Theory of Machines, Fluid mechanics and Fluid machinery)	4 Students per setup	Thermal engineering:Stephen Boltzmann apparatusForced convection apparatusNatural convection apparatusNatural convection apparatusThermal conductivity (metal rod) apparatusHeat transfer from a pin finWindow Air-conditioning trainerTheory of Machines:Universal vibration apparatusUniversal governor apparatusMotorized gyroscopeStatic and Dynamic balancing equipmentFluid mechanics & fluid machinery:Venturimeter, orificemeter & rotameter apparatus	6 hours	Mr. G. M. Reddy Mr. K. N. Rao Mr. R. N. Rao	Laboratory Assistant Laboratory Assistant Laboratory Assistant	DME ITI DEE & ITI

			Bernoulli's theorem apparatus Pitot static tube apparatus Orifice & mouthpiece apparatus Pelton wheel turbine test rig Centrifugal pump test rig Working models of machine elements are located in the manual drawing laboratory and listed under the Design and Drawing Laboratory section of this document				
4	Materials Testing and Characteri- zation Laboratory	4 students per setup	Hardness testing:Rockwell hardness testerBrinell hardness testerVickers hardness testerVickers hardness testerTensile and impact testing:Universal testing machineInstron make, model 5969Charpy impact testing machineMetallographic testing:Precision high speed saw with diamond wafering blade for metallographic sample cutting, Metco make, model Baincut- HSSSample mounting press Metco make, model BainmountDouble disc variable speed sample	12 hours	Mr. N. Mannepall i	Laboratory Assistant	DME

			grinder/polisher, Metco make, model Bainpol Metallurgical microscope, model Metascope T1600, magnification 50X to 1000X				
5	Finite Element Analysis Laboratory and CAD Laboratory	1 student	Desktop computers (LH 12): 65 Nos. ANSYS software: 100 Academic licences AutoCAD Inventor 3D software: No limit Academic licences MATLAB software: No limit Academic licences HP Laser jet M700 A3 size printer and Epson make overhead projector	4 hours	Mr. B.N.S. Chouhan Sub. P. K. Paruchuri	Laboratory Assistant Laboratory Assistant	B.Tec h
6	Design Laboratory and Engineering Drawing Laboratory	4 students per setup for design 1 student per setup for drawing	 <u>Design Laboratory</u>: 3D printer Makerbot make <u>Engg drawing laboratory</u>: Drawing boards: 69 seats The following models of machine elements are also housed in this location: Spur Gear Trains, OSW make, model SMM201 Crank Drive, OSW make, model SMM202 Cam Drive, OSW make, model SMM203 Friction Wheel and Clutch, OSW make, model SMM204 	16 hours	Mr. B.N.S. Chouhan Sub. P. K. Paruchuri Mr. S. Baisetty	Laboratory Assistant Laboratory Assistant Laboratory Assistant	B.Tec h DP DME

			Clutch Drive, OSW make, model SMM205 Belt Drive, OSW make, model SMM206 Belt Type, OSW make, model SMM207 Linkage Gears, OSW make, model SMM208 Linkage Gears, OSW make, model SMM209 Special Gears, OSW make, model SMM210 Internal Gear, OSW make, model SMM211 Internal Gear, OSW make, model SMM211 Differential Gear, OSW make, model SMM213 & 318				
7	Robotics Research Laboratory	n/a	Six Axis Manipulator, ABB make, model IRB1200 Selective Compliance Assembly Robot Arm (SCARA), ABB make, model IRB 910SC 4-Axis educational Robot, DOBOT make, model Magician 3-D Single extrusion printer for Rapid Prototyping, Ultimaker make, model 2+ Mobile Robots Platform, manufactured by MU	n/a	n/a	n/a	n/a
8	Fluidics and Heat Transfer Research Laboratory	n/a	Fluid flow supply system - micro syringe pump Digital differential pressure measurement instrument	n/a	n/a	n/a	n/a

			IR Thermal camera					
			Labjack - DAQ system					
			Testo 405i - thermal					
			anemometer with					
			smartphone operation					
			Pitot tube					
			Digital flow measuring sensor					
			K- type Thermocouple					
			Humidity sensor					
9	Electric	n/a	Ebike kit	n/a	Mr. S.	Laboratory	DME	
	Vehicle Research		Egolf cart		Baisetty	Laboratory DM Assistant DM n/a n/3	Baisetty Assistant	
	Laboratory		SkyRC battery tester					
			IR Thermal camera					
			Labjack data acquisition					
			system					
			Motor load test rig 5 hp					
			Battery cycle tester 1 kW					
10	High	n/a	Dell PowerEdge R430	n/a	n/a	n/a	n/a	
	Performance		Servers: 2 Nos					
	Computing Laboratory		DELL PowerEdge R440					
	Laboratory		Servers: 2 Nos.					
11	Tribology and	n/a	Rotary Tribometer: Pin	n/a	n/a	n/a	n/a	
	Materials Research		on Disc type tester, Ducom Instruments					
	Laboratory		make, model TR-20LE-					
			PHM-CHM40C					
			Mixer cum extruder,					
			Phoenix Advanced Materials make model					
			Sigma					
			Oven, Phoenix Advanced					
			Materials make					

12	Automotive Systems Laboratory	n/a	Motorized Cut Section of a Heavy (31 tonne) Truck Drivetrain (chassis mounted)	n/a	n/a	n/a	n/a
			Light Truck Chassis and Drivetrain				
			Stand Mounted Truck Cabin (for interior study)				
			50 tonne Mahindra Navistar Truck (driveable)				

6.2 Laboratories maintenance and overall ambiance (10)

Maintenance of laboratory equipment:

- 1. Technical support staff monitors the condition of laboratory equipment in coordination with the faculty member in-charge of each laboratory.
- 2. Preventive maintenance is done before the beginning of a new semester when the equipment is to be used. The institution provides adequate budget for this activity. Breakdown maintenance is done on an ongoing basis and is need based for which the institution provides sufficient funds.
- 3. Minor repairs are done by technical staff, and service representatives of equipment suppliers are contacted for any major repairs. The institution has provided funding whenever such support has been found to be necessary.
- 4. Housekeeping staff is assigned to keep the laboratories clean on a regular basis.
- 5. The result of these activities is that equipment is in working order.

Overall ambiance:

- 1. Laboratories are housed in clean facilities with adequate ventilation and sufficient lighting to provide for a safe and comfortable working atmosphere for students, technical staff, and faculty.
- 2. The university has made arrangement for power back-up using diesel generators in case of power supply breakdown. Computers and electronic equipment are powered using uninterrupted power supply outlets for which a centralized battery back-up facility is installed at the university.
- 3. All the laboratories have adequate and comfortable furnishings.

- 4. Sufficient number of equipment is available so that no equipment is ever overcrowded. The maximum number of students sharing any piece of equipment for any experiment is four.
- 5. Laboratory manuals are available wherever these are relevant.
- 6. Safety precautions are documented and displayed prominently, and students are made aware of safety precautions on the first day of the laboratory sessions every semester.
- 7. Fire extinguishers are located strategically within easy visibility. These are regularly maintained and certified by qualified fire safety regulators.
- 8. First aid kits are available at strategic locations in the university premises. A doctor is available on-campus, and an ambulance is also available to take care of any health or injury emergencies. During their orientation, students are made aware of these facilities. All faculty and staff are aware of these facilities, and they are available to help students when in need arises.

S. No.	Name of the Laboratory	Safety precautions
1	Mechanical Workshop (including benchwork and fitting, carpentry, sheet metal work, welding, turning, milling, drilling, and tapping for workshop practice)	 Closed toed shoes to be worn at all times. Safety glasses to be worn when working with tools or machines. Sleeves to be rolled up. Loose clothes to be avoided or tucked in securely. Long hair to be tied back securely in a bun. For powered machinery, be aware of the emergency stop button location. Familiarize yourself well with the controls of powered machinery before operating it. No calling anyone from behind and no horseplay in the laboratory. No cellphone use while working with machines or tools, or while walking. Workplace to be cleaned and tools/instruments returned before leaving the laboratory.
2	Manufacturing and Metrology Laboratory	 Closed toed shoes to be worn at all times. Safety glasses to be worn when working with tools or machines. Sleeves to be rolled up. Loose clothes to be avoided or tucked in securely. Long hair to be tied back securely in a bun. For powered machinery, be aware of the emergency stop button location

6.3. Safety measures in laboratories (10)

		 Familiarize yourself well with the controls of powered machinery before operating it. No calling anyone from behind and no horseplay in the laboratory. No cellphone use while working with machines or tools, or while walking. Workplace to be cleaned and tools/instruments returned before leaving the laboratory.
3	Mechanical Laboratory (Thermal engineering, Theory of Machines, Fluid mechanics and Fluid machinery)	 Closed toed shoes to be worn at all times. Safety glasses to be worn when working with tools or machines. Sleeves to be rolled up. Loose clothes to be avoided or tucked in securely. Long hair to be tied back securely in a bun. For powered machinery, be aware of the emergency stop button location. Familiarize yourself well with the controls of powered machinery before operating it. No calling anyone from behind and no horseplay in the laboratory. No cellphone use while working with machines or tools, or while walking. Workplace to be cleaned and tools/instruments returned before leaving the laboratory.
4	Materials Testing and Characterization Laboratory	 Wear closed toed shoes. Minimize exposed skin, and confine long hair and loose clothing. Use safety eye shield when grinding specimens. Do not remove specimens from abrasive cut-off machine until the wheel has stopped. Tensile Testing: During the tensile test observe from a distance and wear protective eyewear. Read MSDS carefully before using chemicals for etching/cleaning specimen Charpy machine: Never leave the hammer in the up position until ready to break a specimen. No calling anyone from behind and no horseplay in the laboratory. No cellphone use while working with machines or tools, or while walking. Workplace to be cleaned and tools/instruments returned before leaving the laboratory.
5	Finite Element Analysis Laboratory and CAD Laboratory	 Wear closed toed shoes Loose clothing to be tucked in Long hair to be tied back in a bun No shouting out to call anyone from behind No horseplay and no idle chats. Cellphones to be turned off fully and kept away. Absolutely no cellphone use inside the laboratory.

6	Design Laboratory and Engineering Drawing Laboratory	 Wear closed toed shoes Loose clothing to be tucked in Long hair to be tied back in a bun No shouting out to call anyone from behind No horseplay and no idle chats. Cellphones to be turned off fully and kept away. Absolutely no cellphone use inside the Lab.
7	Robotics Research Laboratory	 Wear closed toed shoes. No food or drinks are allowed in the Lab. Keep work areas neat and organized, and clean up all work areas after the lab. No playing or running, and no throwing of objects of any kind. Do not wear loose or baggy clothing or jewelry when using tools. Weareye protection, and gloves when necessary. Do notconverse with other students while operating machines or using tools. Readthe lab instructions carefully and make sure you know what you're about to do before starting to do it. Stop using the equipment if it is not working properly. Know the location of the nearest fire extinguisher and first aid kit, and in the event of a fire or on hearing the fire bell, leave calmly by the stairs and assemble outside the building.
8.	Fluidics and Heat Transfer Research Laboratory	 Closed toed shoes to be worn at all times. Safety glasses to be worn when working with tools or machines. Sleeves to be rolled up. Loose clothes to be avoided or tucked in securely. Long hair to be tied back securely in a bun. Familiarize yourself well with the controls of powered machinery before operating it. No calling anyone from behind and no horseplay in the laboratory. No cellphone use while working with machines or tools, or while walking. Workplace to be cleaned and tools/instruments returned before leaving the laboratory.
9.	Electric Vehicle Research Laboratory	 Closed toed shoes to be worn at all times. Safety glasses to be worn when working with tools or machines. Sleeves to be rolled up. Loose clothes to be avoided or tucked in securely. Long hair to be tied back securely in a bun. Familiarize yourself well with the controls of powered machinery before operating it.

10.	High Performance Computing Laboratory	7. 8. 9. 1. 2.	No calling anyone from behind and no horseplay in the laboratory. No cellphone use while working with machines or tools, or while walking. Workplace to be cleaned and tools/instruments returned before leaving the laboratory. Ensure that computers and electronic equipment are properly earthed. No idle chats and no horseplay in the laboratory.
11.	Tribology and Materials Research Laboratory	1. 2. 3. 4. 5. 6.	Wear closed toed shoes. Minimize exposed skin, and confine long hair and loose clothing. Use safety eye shield when grinding specimens. No calling anyone from behind and no horseplay in the laboratory. No cellphone use while working with machines or tools, or while walking. Workplace to be cleaned and tools/instruments returned before leaving the laboratory.
12.	Automotive Systems Laboratory	1. 2. 3. 4. 5. 6. 7. 8. 9.	Closed toed shoes to be worn at all times. Safety glasses to be worn when working with tools or machines. Sleeves to be rolled up. Loose clothes to be avoided or tucked in securely. Long hair to be tied back securely in a bun. Familiarize yourself well with the controls of powered machinery before operating it. No calling anyone from behind and no horseplay in the laboratory. No cellphone use while working with machines or tools, or while walking. Workplace to be cleaned and tools/instruments returned before leaving the laboratory.

6.4. Project laboratory (20)

There are a number of computational and experimental facilities in the Department of Mechanical Engineering to facilitate the students to carry out their final year projects. In addition, these facilities play a supporting/central role for some research projects. These facilities assume significance since a final year project is mandatory as a part of the coursework. Additionally, a third-year project is also mandatory as a part of the coursework.

Laboratory Photo	Description
	Design and Prototyping Laboratory 3-D printing facility is available for use in projects: Two MakerBot Replicator 2X 3-D printers are installed for this purpose.
	Materials Testing Laboratory
	To measure the mechanical properties of materials, an advanced Universal Testing Machine of Instron make model 5969 and indentation machines to measure hardness are available. In addition, metallographic sample preparation facilities and a Metallurgical microscope, model Metascope T1600, magnification 50X to 1000X are available. The lab also house the pin on disk wear machine for projects addressing the tribological properties of materials.
	Fluidics and Heat Transfer Laboratory
	Projects addressing mixing characteristics of fluids in a low Reynolds number flow, developing cooling
	methods for high heat flux generating surfaces, and
	thermal management of batteries in e-vehicles are carried out in the fluidics and heat transfer lab
	facility. The lab is equipped with micro syringe
	instrument, IR Thermal camera, Labjack - DAQ
	system, Testo 405i - thermal anemometer with

Project Facilities:

- 1. Working space available in the workshop as well as the research laboratories for projects. (Some of the interesting projects executed by students include manufacture of the Baja four wheeled vehicle for a student competition, aircraft for a student competition, and an Automated Underwater Vehicle for a student competition.)
- 2. 24 x 7 power supply on the campus
- 3. 24 x 7 wi-fi connection is available on the campus.
- 4. Access to computer the lab on the campus.
- 5. A foldable swimming pool available for underwater vehicle testing.
- 6. Workshop facilities are available for project fabrication.
- 7. 3D-printing facility is available for project fabrication.
- 8. Institutional support for attending competitions and displaying projects to the public.

Annexure 6.1 Laboratory details (AY 2019-20)

S. No	Name of the laboratory	No. of students per setup	Name of the important equipment	Weekly utilization	Technical man power support					
		(batch size)		status	Name of the technical staff	Designation	Qualifica tion			
1	Surveying	4	 Prismatic compass Plane table Theodolite Total station Dumpy level GPS 	6 hours per week	Mr. K. Sathyam Naidu	Lab Assistant	B. Tech			
2	Concrete Technology	4	 CTM Vibrating machine Accelerating curing tank Concrete mixer drum type 1 m³ capacity UTM Vee-Bee consistometer Vibrating table Vicat apparatus Slump cone apparatus Flow table 	6 hours per week	Mrs. T. Bindhu Madhavi	Lab assistant	B. Tech			

3	Fluid mechanics and Hydraulics and Hydraulic Machinery	4	1.Pelton wheel2.Centrifugal pump3.Reynold's number4.Notches5.Pipe friction apparatus6.Bernoulis Equipment7.Orifice and Venturi meter8.Pipe fittings9.Pitot tube	6 hours per week	Mr. K. Satyam Naidu	Lab assistant	B. Tech
4	Soil mechanics	4	 Unconfined compression test Permeability Test Consolidation Test California Bearing test Direct shear test Relative density 	6 hours per week	Mr. K. Satyam Naidu	Lab assistant	B. Tech
5	Computer aided drafting/drawi ng	1	 Auto CAD 2019 Software Systems with 1TB HDD and 8GB RAM 	6 hours per week	Mrs. T. Bindhu Madhavi	Lab Assistant	B. Tech
6	Transportatio n Engineering	4	 (a) Loss Angeles abrasion testing machine (b) Bitumen penetrometer (c) Ductility testing machine (d) Universal water bath (e) Marshall stability apparatus 	6 hours per week	Mr. K. Satyam Naidu	Lab assistant	B. Tech

7	Environmenta	4	• Spec	ctophotometer	6 hours per	Mrs. T. Bindhu	Lab	B. Tech
	1 Engineering		• COI	COD heater block		Madhavi	assistant	
			• Port	table DO meter				
			TDS	S/Temperature meter				
			• Jar t	test apparatus				
			• Hot	air oven				
			• Muf	ffle furnace				
			• Digi	ital BOD incubator				
8	Computing	1	• MA	TLAB	6 hours per	Mrs. T. Bindhu	Lab	B. Tech
	Lab		• Auto	odesk Inventor	week	Madhavi	Assistant	
			• Syst	tems with 1TB HDD				
			and	8GB RAM				

S.	Name of theNo. ofName of the importantlaboratorystudentssquipment		Name of the important	Weekly	Technical man power support					
INU		per setup (batch size)	equipment	status	Name of the technical staff	Designati on	Qualificatio n			
1	Surveying	4	 Prismatic compass Plane table Theodolite Total station Dumpy level GPS 	6 hours per week	Mr. Vamshi	Lab Assistant	B. Tech			
2	Concrete Technology	4	 CTM Vibrating machine Accelerating curing tank Concrete mixer drum type m³ capacity UTM Vee-Bee consistometer Vibrating table Vicat apparatus Slump cone apparatus Flow table 	6 hours per week	Mr. K. Sathyam Naidu	Lab assistant	B. Tech			
3	Hydraulics and Hydraulic Machinery	4	 9 Pelton wheel 10 Centrifugal pump 11 Reynold's number 12 Notches 13 Pipe friction apparatus 14 Bernoulis Equipment 15 Orifice and Venturi meter 16 Pipe fittings 	6 hours per week	Mr. K. Satyam Naidu	Lab assistant	B. Tech			

Annexure 6.2 Laboratory details (AY 2018-19)

			- I	Pitot tube				
4	Soil mech anics	4	- 1 - 1 - 1 - 0 - 0 - 1 - 1 - 1	Unconfined compression test Permeability Test Consolidation Test California Bearing test Direct shear test Relative density	6 hours per week	Mr. Vamshi	Lab assis tant	B. Tech
5	Compute r aided drafting/ drawing	1	- 4 - 5 - 5 - 1 - 1 - 1	Auto CAD Software Systems with 1TB HDD and 8GB RAM	6 hours per week	Mrs. T. Bindhu Madhavi	Lab Assis tant	B. Tech
6	Transport ation Engineer ing	4	- I 2 4 5 5 7 1 - I 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1	Loss Angeles abrasion testing machine Bitumen penetrometer Ductility testing machine Universal water bath Marsh all stabili ty appar atus	6 hours per week	Mr. K. Satyam Naidu	Lab assis tant	B. Tech

7	Environ	4	1. Spectophotomete	6 hours per	Mrs. T.	Lab	B. Tech
	mental		r	week	Bindhu	assis	
	Engineeri		2. COD heater		Madhavi	tant	
	ng		block				
			3. Portable DO				
			meter				
			TDS/Temper				
			ature meter				
			4. Jar test apparatus				
			5. Hot air oven				
			6. Muffle furnace				
			7. Digital BOD				
			incubator				
8	Comp	1	1. MATLAB	6 hours per	Mr.	Lab	B. Tech
	uting		2. Autodesk	week	Vamshi	Assis	
	Lab		Inventor			tant	
			3. Systems with				
			1TB HDD				
			and 8GB				
			RAM				

CRITERION 6	Facilities and Technical Support	80

Adequate and well-equipped laboratories, and technical manpower (40)

S.No.	Name of Lab	No of Students	No of Syste	Name of the important	Weekly Utilization Status (all	Technical Manpower Support				
		per set up (Batch Size)	ms	Equipment	the courses for which course is utilized)	Name of technical Staff	Designati on	Qualificat ion		
1	LH 11	30/60	70	Intel® Core TM i5-7500 CPU @ 3.40GHz × 4 / 1 TB/(16 GB/8GB)	ES106, CS 307, CS 415, CS 417	MUNIGAN TI SRINIVAS	SR. LAB ASSIST ANT	M.TECH (CSE)		
2	LH 12	30/60	66	Intel® Core [™] i5-6500 CPU @ 3.20GHz 3.19GHz/1 TB/8 GB	ES 211, ME 312, ME 201, CS 308, CE 307	SAMA SUDHEER REDDY	LAB ASSIST ANT	M.TECH (CSE)		

3	Languag e Lab	30/60	59	Intel [®] Core [™] i5-4590 CPU@ 3.30GHz, 3301MHz,4 Cores(S),4 Logical Pro/ 1 TB/8 GB	HS 101, ES 210, CS 204, CS 310, CS 311, CS 312	MUNIGAN TISRINIV AS SAMA SU DHEER REDDY	SR. LAB ASSIST ANT LAB ASSIST ANT	M.TECH (CSE) M.TECH (CSE)
			CHANDR AKALA SHARMA	LAB ASSIST ANT	B.TECH (IT)			
4	Compute r Center	30	41	Intel®Core™ i5- 4570CPU@3.2 0 GHz/500 GB/4 GB -	ME 309	ASHISH KUMAR ROY	LAB ASSIST ANT	B. Tech (Electronic s Engineerin g)

Table B.6.1

Laboratories maintenance and overall ambiance (10)

.

- All the laboratories are well equipped and maintained to conduct laboratory courses.
- Minimum 15% to 20% of unutilized lab slots are allotted for regular maintenance of laboratories. Technical Staffs are well trained for maintenance.
- Stock Register, Service Register, Log Register, Obsolete Register, Movement Register are available in the laboratories.
- Curriculum relevant materials like list of experiments, laboratory manuals and previous
- sample laboratory records are made available in all laboratories.
- Laboratories are equipped with Computer / Laptop with internet facility, LCD projector
- and other teaching aids wherever required.

- Adequate working and instructional space with good ambiance is available in all
- laboratories. Computer Laboratories are air-conditioned and provided with internet through LAN /
- Wi-Fi.
- Adequate furniture like chairs, work benches and stools are made available in all
- laboratories.
- Regular checkup of equipment is carried out at the end of every semester.
- Breakdown register is maintained in the laboratories.
- As per the requirement minor repairs are carried out by the lab technical staff.
- List of experiments, laboratory equipment details, charts / models and Time-Tables are
- displayed in the laboratory.
- Major repairs are outsourced by following the procedure of the institute.
- Lighting system is very effective, along with the natural light in every corner of the rooms.
- Labs are equipped with sufficient hardware and licensed software to run program specific curriculum

	Table 6.2 Maintenance schedule of the laboratory													
Task	Frequency	Performed by	Ja n	Fe b	Ma r	Ap r	Ma y	Jun e	Jul y	Au g	Se p	Oc t	No v	Dec
Lab cleaning	Every day	House keeping												
Software Installations	Half yearly	Lab staff												
CRO calibration and Probe testing	Every Month	Lab staff												
Regulated Power Supply calibration	Monthly	Lab staff												
Equipment Purchasing	As per need	Lab staff												
Equipment servicing	As per need	Lab staff												

Stock verification	Half yearly	Lab staff						
Faulty equipment repairing	As per need	Lab staff						
Safety equipment checking	Monthly	Lab staff						

• Safety measures in laboratories (10)

S. No.	Name of the Laboratory	Safety Measures
1	LH 11	 General rules of conduct in laboratories are displayed. Specific Safety Rules for students displayed. First aid box, Fire extinguisher are kept in the laboratory. Well trained technical supporting staff. Avoiding the use of damaged equipment and providing needful equipment and components. Periodical servicing of the lab equipment. Maintain a clean and organized laboratory, Avoiding the use of cellphones. Appropriate storage areas.
2	LH 12	 General Rules of Conduct in Laboratories are displayed. 10. Specific Safety Rules for students displayed. 11. First aid box, Fire extinguisher are kept in the laboratory. 12. Well trained technical supporting staff. 13. Avoiding the use of damaged equipment and providing needful equipment and components. 14. Periodical servicing of the lab equipment. 15. Maintain a clean and organized laboratory. 16. Avoiding the use of cellphones. 17. Appropriate storage areas.
3	Language Lab	 7 General Rules of Conduct in Laboratories are displayed. 8 Specific Safety Rules for students displayed. 9 First aid box, Fire extinguisher are kept in the laboratory. 10 Well trained technical supporting staff.

		 Avoiding the use of damaged equipment and providing needful equipment and components. Periodical servicing of the lab equipment. Maintain a clean and organized laboratory. Avoiding the use of cellphones. Appropriate storage areas.
4	Computer Center-GF	 General Rules of Conduct in Laboratories are displayed. Specific Safety Rules for students displayed. First aid box, Fire extinguisher are kept in the laboratory. Well trained technical supporting staff. Avoiding the use of damaged equipment and providing needful equipment and components. Periodical servicing of the lab equipment. Maintain a clean and organized laboratory. Avoiding the use of cellphones. Appropriate storage areas.

Table B.6.3

• Project laboratory (20)

NVIDIA DGX-1 Supercomputer Lab

The NVIDIA® DGX-1TM Deep Learning System is the world's first purpose-built system for deep learning with fully integrated hardware and software that can be deployed quickly and easily.

The NVIDIA DGX-1 comes with a base operating system consisting of an Ubuntu OS, Docker, Docker Engine Utility for NVIDIA GPUs, and NVIDIA drivers. This system is designed to run a number of NVIDIA-optimized deep learning framework applications packaged in Docker containers. You can use your own scheduling and management software to run jobs, and also build and run your own applications on the DGX-1. Hardware Specifications Component

Component	Qty	Description
Base Server	1	Dual Intel® Xeon® CPU motherboard with x2 9.6 GT/s QPI, 8 Channel with 2 DPC DDR4, Intel®C610 Chipset, AST2400 BMC
	1	GPU Baseboard supporting 8 SXM2 modules (Cube Mesh) and 4 PCIE x16 slots for InfiniBand/Ethernet NICs
	1	Chassis with 3+1 1600W Power supply and support for up to five 2.5 inch drives
	1	10/100BASE-T IPMI Port
	1	RS232 Serial Port
	2	USB 3.0 Ports (set as USB 2.0 by default. To enable USB 3.0, see Enabling USB 3.0 for instructions.)
Power Supply	4	1600 W each.
CPU	2	Intel® Xeon® E5-2698 v4, 20-core, 2.2GHz, 135W
GPU	8	(Pascal) Tesla P100, featuring
		170 teraflops, FP16
		16 GB memory per GPU
		28,672 NVIDIA CUDA® Cores
		(Volta) Tesla V100, featuring
		1 petaflop, Mixed Precision
		16 GB memory per GPU
		40,960 NVIDIA CUDA® Cores
		5120 NVIDIA Tensor Cores
		(Volta 32 GB) Tesla V100, featuring
		1 petaflop, Mixed Precision
		32 GB memory per GPU
		40,960 NVIDIA CUDA® Cores
		5120 NVIDIA Tensor Cores
System Memory	16	32 GB DDR4 LRDIMM (512 GB total)
SAS Raid Controller	1	8 port LSI SAS 3108 RAID Mezzanine
Storage (RAID 0)	4	1.92 TB, 6 Gb/s, SATA 3.0 SSD

(Data)		
Storage (OS)	1	480 GB, 6 Gb/s, SATA 3.0 SSD
10 GbE NIC	1	Dual port, 10GBASE-T, network adapter Mezzanine
InfiniBand	4	Single port, x16 PCIe, Mellanox ConnectX-4 VPI MCX455A-ECAT
EDR/100GbE NIC		or
		Single port, x16 PCIe, Mellanox ConnectX-5 VPI MCX555A-ECAT

Mechanical

Feature	Description
Form Factor	3U Rackmount
Height	5.16" (13.1 cm)
Width	17.5'' (44.4 cm)
Depth	34.1" (86.6 cm)
Gross Weight	134 lbs (61 kg)

Environmental

Feature	Description
Operating Temperature	5° C to 35° C (41° F to 95° F)
Relative Humidity	20% to 85% noncondensing
Airflow	340 CFM @ 35° C
Heat Output	12000 BTU/hr

Power Requirements

Input		Specification for Each Power	Comments
		Supply	
200-240 V (ac)	3500 W max.	1600 W @ 200-240 V,	The DGX-1 contains four load-
		8 A, 50-60 Hz	balancing power supplies, with
			3+1 redundancy.

Connections and Controls

ID	Туре	Qty	Description
1	Power button	1	Press to turn the DGX-1 on or off.
			Blue: System power on

			Off: System power off
			Amber (blinking): DC power Off, fault reported in BMC SEL
			Amber and blue (blinking): DC power On and fault reported in BMC SEL
2	ID button	1	Press to cause an LED on the back of the unit to flash as an identifier during servicing.
3	InfiniBand/Ethernet (QSFP28)	4	EDR IB/100GbE
4	USB	2	USB 3.0 ports are available to connect a keyboard.
5	VGA	1	The VGA port connects to a VGA capable monitor for local viewing of the DGX-1
			setup console or base OS.
6	DB9	1	RS232 serial port for internal debugging
7	AC input	4	Power supply inputs
8	Ethernet (RJ45)	2	10GBASE-T dual port network adapter Mezzanine
9	IPMI (RJ45)	1	10/100BASE-T Intelligent Platform Management Interface (IPMI) port

Rear Panel Power Controls

	Status	Description
1 (Port 1 Link/Activity)	Amber (steady)	LAN link
	Amber (blinking)	LAN access (off when there is traffic)
	Off	Disconnected
2 (Port 1 Speed)	Green	10 Gb/s
	Amber	1 Gb/s
	Off	100 Mb/s
3 (Port 0 Link/Activity)	Amber (steady)	LAN link
	Amber (blinking)	LAN access (off when there is traffic)
	Off	Disconnected
4(Port 0 Speed)	Green	10 Gb/s
	Amber	1 Gb/s
	Off	100 Mb/s

Table B.6.3

Many external and internal research projects have requirements for intensive computing. This is typical of projects requiring simulations of governing equations of different physical processes as well as Artificial Intelligence projects that need extensive computations for training. Our Supercomputer laboratory has one NVIDIA DGX-1 computer with 8 V-100 GPU cards each having 5120 threads. It also a latest Intel 48-core CPU-based server. Independently, there are 32 Workstations that support Dassault-Systemes 3D-Experience Software along with underlying packages like CATIA and DELPHI.

CRITERION 6	Facilities and Technical Support	80

• Adequate and well-equipped Laboratories, and technical manpower (40)

Table B.6.1 Laboratory detail

	e		the	Technical M	anpower Su	pport	
S.No	Name of the Laboratory	No of students per setup (Batch size	Name of the Important Equipment	Weekly utilization status (all t courses for which lab is utilized)	Name of the Technical Staff	Designation	Qualification
1	Basic Electrical	3-4	7. Oscilliscope	2017-2018:	Mr.	Lab	B.Tech
	Engineering Lab		8. Bench multimeter i dm 201 n	Odd Sem: 8 Hrs	Akhilesh	Assistant	
	(2 Nos)		9. Tg 120 function gen	+ 6 Hrs project	Pandey		
			10. Adjustable power supply				
			11. Single phase transformer				

	7. Hand held air blower(wolf	Even Sem:		Lab	
	make)			Assistant	B.Tech
	8. LED TV samsung 45"	8 Hrs + 6 Hrs	Mr. Rakesh		
	9. Digital Storage Oscillosoce	Project			
	50 mhz: 1GS/s:2 ch 2.5K				
	record Length- Model				
	TBS1052B-EDU	2018-2019			
	10. Digital Storage Oscillosoce	Odd Sem: 8 Hrs			
	70 mhz: 1GS/s:2 ch 2.5K	+ 6 Hrs project			
	record Length- Model				
	TBS1072B-EDU				
	11. Digital Storage Oscillosoce	Even Sem:			
	200 mhz: 1GS/s:2 ch 2.5K	Lven Sem.			
	record Length- Model	8 Hrs + 6 Hrs			
	TBS1202B-EDU	Project			
	12. Arbitrary/Function				
	Generator : 2Chl:125MS/s:	2019-20:			
	25mhz Sine Waveform:14-	Odd sem: 8 Hrs+6			
	bits:3.9 color LCD 2U half	Hrs project			
	rack: USB Host/Device-				
	Model: AFG1022				

			 11. Arbitrary/Function Generator : 2Chl:125MS/s: 25mhz Sine Waveform:14- bits:3.9 color LCD 2U half rack: USB Host/Device- Model: AFG1022 12. Computer 				
2	Electrical Machines Lab	3-4	 10. 5HP3PHASESLIPPERING MOTOR 11. 3 phase squirrel cage induction motor 12. Rheostat 1000 ohm/2A 13. Rheostat 220 ohm/2A 14. Rheostat 350 ohm/2A 15. Rotor resistance stater 16. Star Delta Stater 17. Synchronising panel 18. Voltmeter 0-30V AC 19. Voltmeter 0-300V AC 20. Voltmeter 0-600V AC 21. Wattmeter3ph 2E600V/10A 	2017-2018 Odd Sem: 8 Hrs + 6 Hrs project 2018-2019 Odd Sem: 8 Hrs + 6 Hrs project 2019-2020 Odd Sem: 8 Hrs + 6 Hrs project	Mr. Bharatlal Rai	Lab Assistant	B.Tech

7. Wattmeter 300V/10A
8. Wattmeter300V/10A UPF
9. 2 point stater
10. 3 Point Stater
11. 5HP DC Motor with 3PH
Alternater
12. 5HP DC Shunt Motor with
Generator
13. AMMETER0-15A
14. AMMETER0-2.5/5A
15. Auto Transfomer 10A
16. Auto Transfomer 20A with
Bridge Rectifier
17. Dc Series Motor 5HP
18. DPST Switch
19. Hylem Sheet with Accy
20. Rheostat 1PH 3KW
21. Rheostat 3PH 2kw
22. Rheostat 3PH 3kw
23. Ammeter 0-10 A AC
24. Ammeter 0-2A DC

	10. Ammeter 0-30A DC
	11. TRANSFORMER 3PH
	2KVA
	12. DIGITAL
	WATTMETER(Schneider)
	13. DIFFERENTIAL PROBE
	14. AC/DC CURRENT CLAMP
	15. ANALOG MULTIMETER
	16. INDUCTOR COIL 0.15H -
	1.4 H
	3. Rheostat 50 ohms 5A
	4. Veriable Transformer 0-
	250V AC
	5. DC MOTER 1HP,4A
	6. 3 PH Inductions Motor,0.75
	KW-1.8 A
	7. DIGITAL MULTIMETER
	4&1/2
	8. TRANSFORMER 1HP0.75
	kw,200-240V AC

3	Power	3-4	16. Dual Power Supply	2017-2018	Mr. Babu	Lab	B.Tech
	Electronics Lab		17. Oscilloscopes	Even Sem: 8 Hrs	ram dash	Assistant	
			18. Differential Probes	+ 3 Hrs project			
			19. Function generator				
			20. DC DC converters				
			21. DC AC Inverters	2018-2019			
			22. Computers	Odd Sem: 8 Hrs	And	Lab	B.Tech
			23. MATLAB software	+ 3 Hrs project		Assistant	
			24. LABVIEW software				
			25. PLEXIM		Mr. B M		
				2019-2020	Hazari		
				Odd Sem: 8 Hrs			
				+ 3 Hrs project			
4	Advanced	3-4	18. Dual regulated power supply	2017-2018	Mr.	Lab	Diploma
	Electronics Lab		19. Single channel power supply	Odd Sem: 8 Hrs	Muragaiah	Assistant	
			20. Digital storage oscilloscope	Even Some 9 Has			
			(DSO)	Even Seni: 8 His			
			21. Dual channel function	+ 4 mis project			
			generator				

			11 Digital multimeter	2018-2019				
			12 (dmm)	Odd Sem: 8 Hrs				
			13 Digital multimeter					
			14 Black	Even Sem: 8 Hrs				
			15 Analog multimeter	+ 4 Hrs project				
			16 Analog system lab kits					
			17 (asl kits)					
			18 Project bread board kits	2019-2020				
			19 Bread boards	Odd Sem: 8 Hrs				
				Even Sem: 8 Hrs				
				+ 4 Hrs project				
5	Digital	2.2	Communications	2015 16 .	Ma	•	Lab	D Tash
5		2-3	• Computers	2013-10 :		А.		D. Tech
	Electronics &		• 8085 Based Advance	Odd sem : 8 hrs	Rajesh		Assistant	
	Microprocessor		Microprocessor Trainers	Even sem ·8 hrs	Yadav			
	Lab		Kits					
			• 8086/8088 based Advance					
			Microprocessor-					
			• 8255 study Card Interface					
			• 8259 Study Card Interface					

• 8channel 12 bit ADC	2016-17 :
Interface without Mux	
• Stepper Motor Interface with	Odd sem : 8 hrs
Stepper motor-3No's	Even sem: 8 hrs
• Dual DAC interface-3No's	
• Raspberry pi 3bmodel	
• Altrea DE2-115 Educational	2017-18 :
and development kit Board	Odd som · 8 hrs
• 8051 Microcontroller	
Trainers kit	Even sem: 8 ms
• STM-32F303 Nucleo	
Arduino uno	
• Sim900A	2018-19 :
• Xbee S2c	Odd sem · 8 hrs
• Xbee USB Host –	
• 20*4 LCD	Even sem: 8 hrs
• 16*2 LCD -	
• Ultrasonic HRSO4 -	2019-20 :
• MG996 SERVO MOTOR	Odd sem : 8 hrs
• Stepper Motor - 18 No's	
	Even sem: 8 hrs

6	Wireless	1-2	•	WSN-iOT Testbed for 5G	2015-16 :	Dalbir	Lab	B.Tech
	Innovation & 5G		•	Lime SDR with Firmware &		Singh	Assistant	
	Lab			Gateware Updates	Odd sem : 8 hrs			
			•	LTE Band 7 Duplexer				
			•	Lime SDR Case				
			•	UFL to SMA Cable				
		•		SMA Cable male to female	2016-17 ·			
			•	SMA Connector male to	2010-17.			
				female	Odd sem : 8 hrs			
			•	Female USB 3.0 tp male 3.0				
				with Y spliter				
			•	50Hz-6GHz Telescopic	2017-18 :			
				Antenna				
			•	ACS 4G- LTE sim card	Odd sem : 8 hrs			
				Reader/ Writer				
			•	4G LTE blank sim card				
			•	Huawel E938U 4G Dongel	2018-19 :			
			•	Sim card Writer software				
			•	10A Lenovo power bank	Odd sem : 8 hrs			
			•	Logitech C270 Web Cam				
			•	Mobile phone power bank				

Bread Board	2019-20 :	
• 5NR-iOT Bridge		
• Samsung S6 Edge Smart –	Odd sem : 8 hrs	
Phone Compatible with 5		
nines radio		
• RSA – DKIT 306		
• CPU& Monitors -06		
• NI USRP-2901, 2 channel 70		
MHz to 6 GHz		
• USRP24W power supply		
• Tri band 7 inch vertical		
Antenna		
• 2.4 & 5 GHz Dual band		
vertical antenna		
• 824-960MHz Antenna		
• CPU & Monitor s-02		

• Maintenance Schedule and Overall ambience

Cleanliness of a laboratory is a prime concern for good teaching/learning ambience. The electrical appliances (fan, light and proper ventilation) are the next significant component of the laboratory. Any laboratory has several equipment's specific to its own domain. Each of such equipment's have to be in good working condition during the conduct of any laboratory class. Proper maintenance and servicing on a periodic basis are done in all the laboratories. Any deficit of equipment/ test kit is noted at the beginning of the semester and efforts are taken to procure the same. The consumable components of laboratory get worn out (or) get damaged. These items need to be purchased periodically as when need arises. Annually each laboratory is monitored for their assets and a status report is prepared. Some components which are obsolete are disposed from time to time. The maintenance schedule carried out in Electrical and Electronics Engineering Department is attached below table 6.

Task	Frequency	Performed by	Jan	Feb	Mar	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec
Lab	Every	House												
cleaning	day	keeping												
Multimeter														
Checking	Weekly	Lab staff												

 Table B.6.2 Maintenance schedule of the laboratory

Project kits	Half							
making	yearly	Lab staff						
Experiment								
al Kit								
Testing	Weekly	Lab staff						
CRO								
calibration								
and Probe	Every							
testing	Month	Lab staff						
Connectors								
soldering,								
Wire								
Clamping	Weekly	Lab staff						
Regulated								
Power								
Supply	Monthl							
calibration	у	Lab staff						
Function								
Generators	Monthl							
calibration	У	Lab staff						
Equipment	As per							
Purchasing	need	Lab staff						
Equipment	As per	Lab staff						

servicing	need							
Stock	Half							
verification	yearly	Lab staff						
Faulty								
equipment	As per							
reparing	need	Lab staff						
Safety								
equipment	Monthl							
checking	У	Lab staff						

• Safety measures in Laboratories (10)

Table B.6.3 Safety measures in laboratories

Sl.No	Name of the laboratory	Safety Measures
1	Basic Electrical Engineering Lab (2 Nos)	Fire extinguisher,
		First aid kit, Emergency Exit
2	Electrical Machines Lab	First Aid,
		Fire Extinguisher,
		Rubber Mat,
		Safety Instruction Board,

		MCB,
		- ,
		Safety precautions chart,
		Treatment against shock chart,
		Emergency Exit
3	Power Electronics Lab	First Aid,
		Fire Extinguisher,
		Rubber Mat,
		Safety Instruction Board,
		МСВ,
		Safety precautions chart,
		Treatment against shock chart,
		Emergency Exit
4	Advanced Electronics Lab	MCB,
		Fire extinguisher,
		First aid kit,

		Rules and Safety Precaution
		Board.
		Emergency Exit
5	Digital Electronics & Microprocessor Lab	МСВ,
		Fire extinguisher,
		First aid kit,
		Rules and Safety Precaution
		Board.
		Emergency Exit
6	Wireless Innovation & 5G Lab	Fire extinguisher,
		First aid kit, Emergency Exit

• Project laboratory (20)

All the academics labs are equipped with a designated location where students can do their projects. The project lab is equipped with state of art facilities and latest emerging equipment's. All the research equipment which are used for PhD research is also accessible to the UG students to perform their project work. Also, in the department it is highly encourage towards the multi-disciplinary projects, where students from different programs can also come and work.

Table B. 6.4 Project Laboratory

Lab Photo	Description
	Project: Load Test on Three Phase Transformer
	Venue: Electrical Machines Laboratory
	Description: To determine the performance of transformer under open
	circuit and short circuit conditions and it is equipped with a three phase
	transformer 2kVA-01 Nos, Three phase Auto-Transformer 440V,10A -
	01, Ammeter 0 to 15A -02 Nos, Voltmeter 0 to 300V -01 Nos, Digital
	Wattmeter 440V,20A -02 Nos, Loading rheostat, Panel mounted Three
	phase 2 KW-01 Nos

Project Lab: Smart health check

Venue: Digital Lab and Microprocessor Lab

Description: Keeping track of the health status of the patient at home is a difficult. Especially old age patients should be periodically monitored and their loved ones need to be informed about their health status from time to time while at work. So we propose an innovative system that automated this task with ease. Our system puts forward a smart patient health tracking system that uses Sensors to track patient health and alerts the care takers in case of emergencies. This laboratory is equipped with various digital and micro

controller equipment in which students can able to test the

electronic equipment.

Project Lab:- Amplitude Modulation

Venue: Advanced Electronics Lab

Description:- This project lab has facilities 2 channels digital storage oscilloscope with range 70Mhz- 1GS/S here this instrument is very useful for analysis wave shaping, frequency, due to cycle,

And time periods of radio frequency, and carrier signal. Advanced level function generator instrument also available in this laboratory it can generate the different functions wave forms with 25Mhz and 125 MS/S and duel regulated power supply available in this laboratory.in this laboratory can be analysis & practice communication engineering many projects work.

